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Markov Model - An Introduction

In this post, we will learn about Markov Model and review

two of the best known Markov Models namely the Markov

Chains, which serves as a basis for understanding the

Markov Models and the Hidden Markov Model (HMM) that

has been widely studied for multiple purposes in the field

of forecasting and particularly in trading.

In this post we will try to answer the following questions:

We will also see how to implement some of these ideas

with Python that will serve as a basis for experimentation.

What is a Markov Model?

A Markov Model is a set of mathematical procedures

developed by Russian mathematician Andrei Andreyevich

Markov (1856-1922) who originally analyzed the alternation

of vowels and consonants due to his passion for poetry.

In the paper that E. Seneta [1] wrote to celebrate the 100th

anniversary of the publication of Markov's work in 1906 [2],

[3] you can learn more about Markov's life and his many

academic works on probability, as well as the

mathematical development of the Markov Chain, which is

the simplest model and the basis for the other Markov

Models.

In the late 1960s and early 1970s Leonard E. Baum and his

colleagues studied, developed and extended the Markov

techniques by creating new models such as the Hidden

Markov Model (HMM) [4].

What are Markov Models used for?

Nowadays Markov Models are used in several fields of

science to try to explain random processes that depend on

their current state, that is, they characterize processes that

are not completely random and independent.  They are also

not governed by a system of equations where a specific

input corresponds to an exact output.

A deterministic model attempts to explain with precision

and accuracy the behaviour of a process and a

probabilistic or stochastic model attempts to determine by

probability the behavior of a randomized independent

process. In contrast, the Markov Model attempts to explain

a random process that depends on the current event but



not on previous events, so it is a special case of a

probabilistic or stochastic model.

When we have a dynamic system whose states are fully

observable we use the Markov Chain Model and if the

system has states that are only partially observable we use

the Hidden Markov Model.

For example, a dynamic system can be a price stream with

a certain frequency, either minutes, hours, days or weeks or

with an undetermined frequency such as ticks, which has

observable states, such as if the price goes up, down or

unchanged, although it can also be a price stream or a

certain price figure. We will go into detail when we see how

the Markov Chain works.

The Markov Model uses a system of vectors and matrices

whose output gives us the expected probability given the

current state, or in other words, it describes the

relationship of the possible alternative outputs to the

current state.

How does a Markov Model work?

Let's start by naively describing how the simplest model,

Markov Chain works. In this post, we are going to focus on

some implementation ideas in Python but we are not going

to stop at the formulation and mathematical development.

It is recommended to the interested reader to review the

tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition by Lawrence R. Rabiner

[6] to get a solid base on the mathematical foundations of

the Markov Chain and the HMM.

With a Markov Chain, we intend to model a dynamic

system of observable and finite states that evolve, in its

simplest form, in discrete-time. We can describe it as the

transitions of a set of finite states over time.

Let's take a simple example to build a Markov Chain. Let's

say we have a series of SPY prices and we want to model

the behavior to make predictions about the future price.

To do this, we need the frequency distribution of each

possible state in time t. From this, we generate a transition

matrix or probability matrix that can be multiplied

iteratively by the original transition matrix, which allows us

to extend the behaviour of the model in time and to know

the probability of the states in time t+i.

The Markov Chain reaches its limit when the transition

matrix achieves the equilibrium matrix, that is when the



multiplication of the matrix in time t+k by the original

transition matrix does not change the probability of the

possible states.

Let's get the 2018 prices for the SPY ETF that replicates

the S&P 500 index.

The first thing is to identify the states we want to model

and analyze. In this example, we will simply consider

whether the price moves up, down or is unchanged.

To summarize, our three possible states are:

1. Up: The price has increased today from yesterday's

price.

2. Down: the price is decreased today compared to

yesterday's price

3. Flat: The price remains unchanged from the previous

day.

To obtain the states in our data frame, the first task is to

calculate the daily return, although it should be

remembered that the logarithmic return is usually better

fitted to a normal distribution.

We then identify the possible states according to the

return. The Flat state could be defined as a range and

hence to consider an up/down as a minimum movement.



We are interested in analyzing the transitions in the prior

day's price to today's price, so we need to add a new

column with the prior state.

With the current state and the prior state, we can build the

frequency distribution matrix.

Here we have gotten the frequency distribution of the

transitions, which allows us to build the initial probability

matrix or transition matrix at time t0.

This would be our transition matrix in t0, we can build the

Markov Chain by multiplying this transition matrix by itself

to obtain the probability matrix in t1 which would allow us

to make one-day forecasts.
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If we continue multiplying the transition matrix that we

have obtained in t1 by the original transition matrix in t0,

we obtain the probabilities in time t2.

Multiplying the transition matrix that we have obtained in t2

by the original transition matrix in t0, we obtain the

probabilities in time t3 and so on until we find the

equilibrium matrix where the probabilities do not change

and therefore we cannot continue evolving the prediction.

Interestingly, you can get out identical results by raising the

initial transition matrix to ‘n’ days to obtain the same result.

To find out the equilibrium matrix we can iterate the

process up to the probabilities don’t change more.



With this example, we have seen in a simplified way how a

Markov Chain works although it is worth analyzing the

different libraries that exist in Python to implement the

Markov Chains.

What is the Hidden Markov Model?

The Hidden Markov Model (HMM) was introduced by Baum

and Petrie [4] in 1966 and can be described as a Markov

Chain that embeds another underlying hidden chain.

The mathematical development of an HMM can be studied

in Rabiner's paper [6] and in the papers [5] and [7] it is

studied how to use an HMM to make forecasts in the stock

market.

In this blog, we explain in depth, the concept of Hidden

Markov Chains and demonstrate how you can construct

Hidden Markov Models.

Also, check out this article which talks about Monte Carlo

methods, Markov Chain Monte Carlo (MCMC).

If you want to detect a Market Regime with the help of a

hidden Markov Model then check out this EPAT Project.

What is the difference between the
Markov Model and the Hidden Markov
Model?



As we have seen a Markov Model is a collection of

mathematical tools to build probabilistic models whose

current state depends on the previous state.

This is the initial view of the Markov Chain that later

extended to another set of models such as the HMM.

The HMM is an evolution of the Markov Chain to consider

states that are not directly observable but affect the

behaviour of the model.

So, we learnt about Markov Chains and the Hidden Markov

Model (HMM). I'd really appreciate any comments you

might have on this article in the comment section below.

Do feel free to share the link of this article. I've also

provided the Python code as a downloadable file below.
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